

Department of computer science College of science University of Cihan/ Sulaimaniyah

Subject: Computation Theory 1

Course Book – Year 2

Lecturer's name: Mustafa Ghanem Saeed

Academic Year: 2015/2016

Course Book

1. Course name	Computation Theory 1
2. Lecturer in charge	Mustafa Ghanem Saeed
3. Department/ College	Computer science
4. Contact	e-mail: mostafa.swe@gmail.com
	Tel:
5. Time (in hours) per	Theory: 2
week	
6. Office hours	All time except teaching hours
7. Course code	CSC2100
8. Teacher's academic	B.Sc. in software Engineering , University Of
profile	Mosul, M.Sc. in Software Engineering, University
	Of Mosul.
	Areas of Specialization: Software Engineering,
	software complexity metrics , Clean Code
9. Kevwords	

10. Course overview:

To have an introductory knowledge of automata, formal language theory and computability. Understanding of grammars and their automata. To have a knowledge of regular languages and context free languages. Knowing the relation between regular language, context free language and corresponding recognizers. Studying the Turing machine and classes of problems.

11. Course objective:

The course introduces some fundamental concepts in Types Of grammars (Chomsky Hierarchy), automata theory, and formal languages including grammar, finite automaton, regular expression, formal language.

12. Student's obligation

- The assignments that have work to be assessed will be given to the students in separate documents including the due date and appropriate reading material.
- Submit your homework covered with a sheet containing your name, course title and number, and type and number of the homework (e.g. tutorial, assignment, and project).

13. Forms of teaching

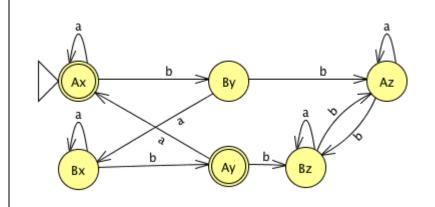
Duration: 16 weeks, 32 hours in total *Lectures:* 32 hours (2 per week)

14. Assessment scheme			
Midterm Examination	30 %		
Quizzes	10 %		
Final Examination	60 %		

15. Student learning outcome:

- Knowledge and understanding
 - Understand the principles and tools of computation theory
 - Understand how computing accrue in different context
 - Understand the aspect of an automaton
 - o professional including understanding the need for grammar
- Cognitive skills (thinking and analysis).
 - Solve a wide range of problems related to the grammar, finite automaton, regular expression, formal language.

16. Course Reading List and References:


- Introduction to the Theory of Computation, by Michael Sipser, 2006.
- Introduction to Computer Theory. By Daniel I. A.Cohen. Prentice-Hall, Second Edition, 1997.

17. The Topic

17. The Topic				
Week	Lecture No	Торіс		
(1)	1	Introduction, terminology, definitions		
12-16/	2	Sets and operations & languages		
10/2015	3			
(2)	1	Regular Expressions RE		
19-23	2	Regular Expressions RE (Cont.)		
/10/2015	3			
(3)	1	Regular Expressions RE ((Cont.)		
26-30/	2	Regular Expressions RE (Cont.)		
10/2015	3			
(4) 2-6/ 11/2015	1	Finite Automata FA		
	2	Finite Automata FA (Cont.)		
11/2015	3			
(5)	1	Deterministic Finite Automaton DFA		
9-13/ 11/2015	2	Non Deterministic Finite Automaton NDFA		
	3			
(6) 16-20/ 11/2015	1	Language Accepted by Finite Automata 5		
	2	Convert Regular Expression into NFA		
	3			

(7)	1	Constructing regular expression from Finite Automate		
(7) 23-27/	1	Constructing regular expression from Finite Automata		
11/2015	2	Constructing regular expression from Finite Automata (Cont.)		
	3			
(8)	1	Finite Automata with Epsilon moves		
30/11/2015	2			
- 4/12/2015	3			
(9)	1	Moore and Mealy machines		
7-11/	2			
12/2015	3			
(10)	1	Converting between Moore and Mealy machine		
14-18/	2			
12/2015	3			
(11)		Pumping lemma for regular languages		
21-25/				
12/2015				
(12)	1	Kleene's Theorem		
28/12/2015	2			
-	3			
1/1/2016				
(13)	1	Regular Grammar		
4-	2	Regular Grammar (Cont.)		
8/1/2016	3			
(14)	1			
11-	2			
15/1/2016	3			
15)	1	Myhill-Nerode Theorem Minimization of DFA		
18-	2			
22/1/2016	3			
		Final Examination		
18. Practica	al Topics (If	there is any)		
19. Examin	ations:			
1. Compos	itional: In	this type of exam the questions usually starts with		
-	Explain how, What are the reasons for?, Why?, How?			
-				
With their typical answers				
Examples should be provided Q. Find a DFA for the language over {a,b}:				
	{ w : w has an even number of b's and does not contain the substring bb }			

Here are the two languages and their DFAs:

2. True or false type of exams:

In this type of exam a short sentence about a specific subject will be provided, and then students will comment on the trueness or falseness of this particular sentence.

Examples should be provided

3. Multiple choices:

In this type of exam there will be a number of phrases next or below a statement, students will match the correct phrase.

Q.The language which is generated by the grammar S-> aSa I bSb I a I b over the alphabet {a, b} is the set of

(A) Strings that begin and end with the same symbol

(B) All odd and even length palindromes

- (C) All odd length palindromes
- (D) All even length palindromes

ANSWER: All odd length palindromes

20. Extra notes:

21. Peer review